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Abstract

The Emotion-Cause Pair Extraction (ECPE)
task aims to extract emotions and causes
as pairs from documents. We observe that
the relative distance distribution of emotions
and causes is extremely imbalanced in the
typical ECPE dataset. Existing methods
have set a fixed size window to capture re-
lations between neighboring clauses. How-
ever, they neglect the effective semantic con-
nections between distant clauses, leading to
poor generalization ability towards position-
insensitive data. To alleviate the problem, we
propose a novel Multi-Granularity Semantic
Aware Graph model (MGSAG) to incorpo-
rate fine-grained and coarse-grained seman-
tic features jointly, without regard to distance
limitation. In particular, we first explore
semantic dependencies between clauses and
keywords extracted from the document that
convey fine-grained semantic features, obtain-
ing keywords enhanced clause representations.
Besides, a clause graph is also established to
model coarse-grained semantic relations be-
tween clauses. Experimental results indicate
that MGSAG surpasses the existing state-of-
the-art ECPE models. Especially, MGSAG
outperforms other models significantly in the
condition of position-insensitive data.

1 Introduction

Emotion Cause Analysis (ECA) has attracted in-
creasing research interest in recent years (Wei et al.,
2020; Sun et al., 2021; Singh et al., 2021; Yu et al.,
2021), because of the great potential of applying
in consumer review mining, public opinion moni-
toring, and online empathetic chatbot building. Its
goal is to detect causes or stimuli for a certain emo-
tion expressed in text.

Emotion Cause Pair Extraction (ECPE) (Xia
and Ding, 2019) is a new task related to ECA,
which is concerned with causal relationships be-
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Figure 1: The distribution of the relative distance of
an emotion clause and a cause clause that comprise a
pair in the ECPE dataset (Xia and Ding, 2019). Dist0,
Dist1, and Dist2 mean the relative distances between
the two clauses are 0, 1, and 2 respectively. Dist > 2
means the relative distances are larger than 2.

tween emotions and causes. It’s a much more chal-
lenging task. Because we need a comprehensive
understanding of document content and structure to
perform emotion-cause co-extraction and discrimi-
nate emotion-cause clause pairs from negative ones
(Wei et al., 2020). As shown in the following ex-
ample, an emotion clause c7 and a cause clause c2
construct an emotion-cause pair (c7, c2) which is
needed to be extracted by an ECPE model.
Example. When the driver was about
to start the bus to leave the station (c1),
an old lady ran to the front of the bus with a fast
speed and sat down on the ground (c2). Passen-
gers standing in the front of the bus can see
this scene clearly (c3). Seeing this scene (c4),
the passengers in the car immediately became
restless (c5), and had a heated debate (c6).
Some of the passengers were angry (c7), and told
the driver he shouldn’t be meddlesome (c8).

In general, the number of candidate emotion-
cause pairs is the square of the number of clauses
in a document. However, most documents con-
tain only one emotion-cause pair. Due to the prob-
lem of the tremendous search space, most existing
methods have fully exploited relative position fea-
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tures to decrease the number of candidate pairs.
For instance, ECPE-MLL (Ding et al., 2020b) and
SLSN (Cheng et al., 2020) set a fixed size window
around a certain clause, and the central clause and
other clauses inside the window comprise candi-
date pairs. However, models heavily relying on the
relative position features ignore the distant seman-
tic cues, resulting in poor generalization ability to-
wards position-insensitive data in which the cause
clause is not in proximity to the emotion clause.

According to Figure 1, we can observe that there
is a position bias problem in ECPE. For the most
85% emotion-cause pairs, the relative distances
between its emotion clauses and corresponding
cause clauses are less than 2. It means that most
cause clauses either appear immediately preced-
ing/following their corresponding emotion clauses
or are the emotion clauses themselves. Existing
methods mainly focus on the position-sensitive data
(majority) and neglect the position-insensitive data
(minority). How to improve the performance on
the two parts of data instead of only focusing on
one of them, has become an intractable challenge.

Some proposed methods (Xia and Ding, 2019;
Chen et al., 2020a) without relative position infor-
mation seem to be position-insensitive, but over-
look the effective semantic connections between
distant clauses which convey causal cues. Thus,
they can not alleviate the position bias problem.

To alleviate this problem, we propose a multi-
granularity semantic aware graph model (MGSAG).
We assume that fine-grained semantic features con-
veyed by global keywords in a document are con-
ducive to exploring causal cues, especially cues
implied in distant clauses. Besides, coarse-grained
semantics between clauses is also important to find
causal relations implied in the context. From the
two perspectives, we realize multi-granularity se-
mantic enhanced clause relationships modeling
based on two graphs: clause-keyword bipartite
graph and fully connected clause graph, utilize
fine-grained and coarse-grained semantic features
jointly. Experimental results show that MGSAG
outperforms all of the state-of-the-art baselines. Es-
pecially, it achieves a significant improvement on
position-insensitive test data. In summary, our con-
tributions are three-fold:

• To alleviate the position bias problem in
ECPE, we propose MGSAG to achieve
fine-grained and coarse-grained semantic en-
hanced clause representation learning.

• To value model performance on emotion-
cause clause pairs consisting of distant
clauses, we split the original test set into two
parts according to the relative distances of
emotion clauses and cause clauses, and evalu-
ate models on them.

• Experimental results prove that our model
achieves remarkable improvement over best-
performing approaches on the original test set.
Especially, it outperforms other methods in
the condition of position-insensitive data.

2 Related Work

According to whether the relative position infor-
mation is used explicitly or not, existing ECPE
works can be divided into two categories: position-
sensitive approaches and position-insensitive ap-
proaches.
Position-Sensitive Approaches. Most meth-
ods (Ding et al., 2020a; Cheng et al., 2020; Ding
et al., 2020b) have set a fixed size window to re-
duce the number of candidate pairs according to the
inherent position bias in the dataset, because of the
sparsity of true emotion-cause pairs compared with
candidate emotion-cause pairs. Besides, Chen et al.
(2020b) leveraged the relative position information
explicitly in the process of pair representation learn-
ing. The ECPE-MLL model proposed by Ding et al.
(2020b) is the state-of-the-art method in the ECPE
task. An over-reliance on relative position informa-
tion makes these methods have poor generalization
ability towards position-insensitive data.
Position-Insensitive Approaches. Some
sequence-based methods without relative position
information (Xia and Ding, 2019; Chen et al.,
2020a; Fan et al., 2020) seem to be position-
insensitive. Xia and Ding (2019) proposed a
RNN-based framework and generate candidate
pairs by applying the Cartesian product. Chen
et al. (2020a) reformulated the ECPE task as a
unified sequence labeling problem. Fan et al.
(2020) modeled the extraction of emotion-cause
pairs as performing a sequence of transitions and
actions. However, these methods have shown poor
performance on position-insensitive data due to the
neglect of effective semantic connections between
distant clauses.

Different from the above methods, our model in-
corporates fine-grained and coarse-grained seman-
tic features jointly, which can alleviate the position
bias problem well.



Figure 2: (a) shows an overview of MGSAG. (b) shows the process of keywords acquisition.

3 Problem Formulation

Given a document D = {c1, c2, ..., c|D|} where
|D| is the number of clauses, the clauses are formed
into |D|× |D| candidate emotion-cause pairs using
Cartesian product: P = {..., (cei , ccj), ...}, where cei
is clause ci serving as a candidate emotion clause,
ccj is clause cj serving as a candidate cause clause.
The ECPE task is to assign a binary label to each
candidate pair (cei , c

c
j), where “1” means that clause

ci is an emotion clause and clause cj provides the
cause of it, otherwise “0”.

4 Methodology

We propose a multi-granularity semantic aware
graph model to alleviate the position bias problem
in ECPE. More concretely, we obtain fine-grained
semantic aware clause representations based on a
clause-keyword bipartite graph. Simultaneously,
coarse-grained semantic aware clause representa-
tions are generated based on a fully connected
clause graph. As shown in Figure 2, the model con-
sists of four components: 1) document encoding,
2) fine-grained semantic aware graph (FGSAG), 3)
coarse-grained semantic aware graph (CGSAG), 4)
pair classification.

4.1 Document Encoding

Given a document D = {c1, c2, ..., c|D|} consisted
of |D| clauses, we adopt a hierarchical recurrent
neural network to encode context information and
generate emotion-specific and cause-specific clause
representations for each clause in the document.

Word-Level Encoder. For each clause ci =
{wi

1, w
i
2, ..., w

i
|ci|}, we first adopt a word-level BiL-

STM network to encode the context by passing
words’ information along the clauses forwards
and backwards, and then obtain the clause’s hid-
den state sequence (hi1, h

i
2, ..., h

i
|ci|). An attention

layer is adopted to combine them and return a
state vector hi =

∑|ci|
j=1 αjh

i
j for clause ci, where

αj = softmax(Wah
i
j) is the attention weight of

the j-th word in clause ci, Wa is a trainable weight
matrix for attention score calculation.
Clause-Level Encoder. In order to extract the
emotion features and the cause features respec-
tively, the clause-level encoder consists of two
BiLSTM networks. The document D’s clause
state sequence (h1,h2, ...,h|D|) is fed into two
clause-level BiLSTM networks to produce emotion-
specific and cause-specific clause representations,
respectively:

ue
i = BiLSTMe(hi) ,

uc
i = BiLSTMc(hi) ,

(1)

where BiLSTMe and BiLSTMc generate the
emotion-specific and cause-specific clause repre-
sentation ue

i ,u
c
i ∈ R2dh×1 of clause ci, respec-

tively. dh means the number of hidden units in
BiLSTM.

Afterwards, we use a gate mechanism to fuse
the emotion feature ue

i and the cause feature uc
i to

obtain clause representation vi ∈ R2dh×1:

gi = σ(Wgu
e
i + bg) ,

vi = giu
c
i + (1− gi)u

e
i ,

(2)



Figure 3: The influence of the two types of key-
words from an intuitive aspect. It shows the propor-
tion of emotion clauses, cause clauses, emotion-cause
pairs, and clauses that are covered by the extracted key
phrases or emotion words or both of them. “w/ EW”,
“w/ TW”, and “w/ CW” means using emotion words,
key phrases obtained by TextRank or both of them, re-
spectively.

where Wg ∈ R1×2dh and bg are parameters; σ is
the sigmoid function.

In the training process, we leverage the emotion
labels and cause labels as auxiliary supervision sig-
nals to facilitate the clause representation learning
in the clause-level encoder:

ŷe
i = softmax(Weu

e
i + be) ,

ŷc
i = softmax(Wcu

c
i + bc) ,

(3)

where We,Wc ∈ R1×2dh are trainable parameters
and be,bc are bias terms.

4.2 Fine-Grained Semantic Aware Graph

To obtain fine-grained semantic enhanced clause
representations, we leverage external knowledge
to extract keywords in the document first. Then,
we build a clause-keyword bipartite graph to model
the relations between clauses. In this way, the key-
words which convey fine-grained semantic features
can help highlight the potential causal features con-
tained in the clause representations.
Keywords Acquisition. We use the TextRank al-
gorithm (Mihalcea and Tarau, 2004) to extract key
phrases and a sentiment lexicon (Xu et al., 2008)1

to obtain emotion words in a document. We take
the union of the two sets as the final keyword set.

To measure the influence of the two types of key-
words from an intuitive view, we count the propor-
tions of emotion clauses, cause clauses, emotion-
cause pairs, and clauses that are covered by the
emotion words or key phrases or both of them.
Noted that if emotion clause and cause clause that

1We download the sentiment lexicon from this link: http
s://github.com/ZaneMuir/DLUT-Emotiononto
logy.

comprise a pair both contain any keyword, we think
that the pair is covered by the keywords.

From Figure 3 we observe that if we use the key
phrases extracted by TextRank alone, only about
69% of emotion clauses can be found; if we use
the emotion words alone, only about 54% of cause
clauses can be identified. With the use of emotion
words or key phrases, only about 50% or 63% of
emotion-cause pairs can be figured out. Conse-
quently, we take the union of the two sets as the
final keyword set. However, given the complete
keyword set, clauses that contain keywords account
for a large proportion (79%), which means that the
imported keywords may introduce noise as well.
To this end, it’s necessary to measure the impor-
tance of different keywords when modeling the
interaction between clauses and keywords.
Clause-Keyword Bipartite Graph Construc-
tion. Given a document D, we denote the clause-
keyword bipartite graph as Gb = (V, Eb), where
V = Vc ∪ Vk represents a node set composing of
clause nodes and keyword nodes and Eb denotes
edges between nodes. Vk = {k1, k2, ..., km} and
Vc = {c1, c2, ..., c|D|} mean there are m keywords
and |D| clauses in the document D. We establish
edges between each node in Vc and each node in Vk,
which means every element eij in Eb ∈ R|D|×m
is 1. It is because the average length of clauses
is too short, many keywords only appear once in
one clause. Thus, an adjacency matrix based on
keyword-clause co-occurrence is extremely sparse.

For keywords in Vk, their feature vectors are ini-
tialized by the word embedding vectors released
by Xia and Ding (2019). As for clause nodes
ci ∈ Vc, they are initialized with the correspond-
ing context-aware clause representation vi gener-
ated from the clause-level encoder. We denote
the feature matrices of keyword and clause nodes
as Xk = {k1, ...,km} ∈ Rm×dw and Xc =
{v1, ...,v|D|} ∈ R|D|×2dh respectively, where dw
is the dimension of the word embedding and is
equal to 2dh in our setting.
Attention Guided Clause Representations Up-
date. We propose a graph attention module to
model the semantic interaction between clauses
and keywords, aiming to utilize the fine-grained
semantic features implied in keywords to facilitate
clause representation learning.

Intuitively, the clause-keyword bipartite graph
realizes fine-grained semantic connections between
distant clauses, which is helpful to extract emotion-

https://github.com/ZaneMuir/DLUT-Emotionontology
https://github.com/ZaneMuir/DLUT-Emotionontology
https://github.com/ZaneMuir/DLUT-Emotionontology
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cause pairs composed of distant clauses. Neverthe-
less, for a specific clause, the importance of various
keywords is different. Therefore, we use the graph
attention mechanism (Velickovic et al., 2018) to
measure the document-level keyword preference-
degree of each clause, where the attention weight
is computed as the edge weight between the clause
node ci and the keyword node kj in a document:

αij =
exp(w>[W1vi;W2kj ])∑|D|
t=1 exp(w

>[W1vt;W2kj ])
, (4)

where vi and kj are features of clause ci and key-
word kj respectively; [·; ·] is the concatenation op-
eration; W1,W2 ∈ Rdw×dw and w ∈ R2dw×1 are
trainable parameters.

Then, clause ci is encoded as the fine-grained
semantic enhanced representation vb

i as follows:

vb
i =tanh((vi +

m∑
j=1

(αij(

|D|∑
t=1

αtjW3vt)))+b) ,

(5)

where
∑|D|

t=1 αtjW3vt means the representation of
the keyword kj , and

∑m
j=1(αij(

∑|D|
t=1 αtjW3vt))

is the weighted added of keyword representations
for generating fine-grained semantic enhanced
clause representation. W3 ∈ Rdw×dw is a train-
able parameter and b is a bias term.

4.3 Coarse-Grained Semantic Aware Graph

Coarse-grained semantic relationships between
clauses are useful for finding causal cues implied in
the context. We establish a fully connected clause
graph and leverage graph attention mechanism to
model the coarse-grained semantic relationships
between clauses.

Given a document D, we define the clause graph
as Gc = (Vc, Ec), where Vc represents a node set
and Ec denotes an edge set. Each node in the fully
connected graph is a clause in D, and every two
nodes have an edge. Self-loop edge is added to
every node because a clause can be an emotion
clause and a cause clause simultaneously. We use
clause representation vi generated from the clause-
level encoder for node feature initialization. Based
on the self-attention mechanism (Vaswani et al.,
2017) which aggregated neighboring clauses’ in-
formation, the graph attention network propagates
information among clauses by stacking multiple
graph attention layers. The representation of clause

ci in the t-th layer is updated as follows:

v
(t)
i = ReLU(

∑
j∈N (i)

α
(t)
ij W

(t)
1 v

(t−1)
j + b(t)) ,

(6)

where W
(t)
1 ∈ Rdw×dw is a transform matrix and

b(t) is a bias term; N (i) represents the neighbour-
ing clauses of ci; v

(0)
i = vi. The attention weight

α
(t)
ij is learned as follows:

e
(t)
ij = w(t)>tanh([W

(t)
2 v

(t−1)
i ;W

(t)
3 v

(t−1)
j ]) ,

α
(t)
ij =

exp(LeakyReLU(e
(t)
ij ))∑

k∈N (i) exp(LeakyReLU(e
(t)
ik ))

,

(7)

We stack two graph attention layers and obtain
vc
i = v

(2)
i as the updated representation for ci.

4.4 Pair Classification
We concatenate the two types of clause representa-
tions and obtain v̂i = [vb

i ;v
c
i ] as the final represen-

tation of clause ci.
Emotion Cause Pair Extraction. For a candidate
pair (cei , c

c
j) ∈ P , we pass its representation vp

ij =
[v̂i; v̂j ] to a fully-connected layer with softmax
activation function to predict the label of it:

p̂ij = softmax(W>
p v

p
ij + bp) , (8)

where Wp ∈ R4dw×2 and bp ∈ R2×1 are trainable
parameters. We obtain the predicted label ÊCij for
the candidate pair (cei , c

c
j) according to the proba-

bility distribution p̂ij .
During model training, we use two cross-entropy

loss functions Lemo and Lcau to supervise the
clause representation learning in the clause-level
encoder and a cross-entropy loss function Lpair to
supervise the final emotion-cause pair prediction.
The loss function L is formulated as follows:

L = Lpair + Lemo + Lcau . (9)

Emotion Extraction and Cause Extraction. Fol-
lowing Chen et al. (2020b), we implement emotion
extraction and cause extraction based on the predic-
tions of all candidate pairs. For emotion extraction,
the predicted label Êi for clause ci can be obtained
as follows:

Êi =

{
1, if

∑|D|
j=1(ÊCij) > 0

0, otherwise
. (10)

For cause extraction, the predicted label Ĉi for
clause ci can be obtained similarly.



5 Experiments

We conduct a series of experiments to verify the
effectiveness of MGSAG.

5.1 Experimental Setup

5.1.1 Dataset and Evaluation Metrics
We use the benchmark dataset released by Xia and
Ding (2019) for experiments. This typical and
widely used dataset is constructed based on an emo-
tion cause extraction corpus (Gui et al., 2016) that
contains 1,945 Chinese documents from SINA city
news2. To obtain statistically credible results, we
adopt the same data split setting (10-fold cross-
validation) used by Xia and Ding (2019), repeat the
experiments 10 times, and report the average re-
sults of precision (P), recall (R), and F1-score (F1)
on the main task: emotion-cause pair extraction
(ECPE), and two sub-tasks: emotion extraction
(EE) and cause extraction (CE), following existing
works (Xia and Ding, 2019; Ding et al., 2020b,a;
Chen et al., 2020a,b; Cheng et al., 2020).

5.1.2 Redistricting of Original Test Set
As ECPE is a newly proposed task, there is only
one typical and widely used dataset. Because of
the inherent position bias in ECPE, how to improve
the performance on both position-sensitive (major-
ity) and position-insensitive data (minority), has
become one of the challenges. Therefore, it is es-
sential to measure the reliance of existing methods
on the relative position information.

To this end, we split the original test set (Testall)
of each fold into two parts according to the rela-
tive distance between emotions and causes. The
first part (TestBias) contains documents with only
one pair and the relative distance between the
two clauses is less than 2. The second part
(TestNoBias) is the complement of the first part,
which means Testall = TestBias ∪ TestNoBias

and TestBias ∩ TestNoBias = ∅. We conduct ex-
periments on the original test set first, and then
use TestBias and TestNoBias to evaluate various
methods respectively. To ensure fairness, we use
the same model parameters which produce results
on Testall to obtain the results on the two subsets:
TestBias and TestNoBias.

5.1.3 Comparative Approaches
We compare MGSAG with the following meth-
ods, which can be divided into two types: position-

2http://news.sina.com.cn/society/

insensitive and position-sensitive methods.
Position-insensitive Methods. Following meth-
ods haven’t utilized the relative position informa-
tion explicitly. Indep / Inter-CE / Inter-EC (Xia
and Ding, 2019): these two-step approaches first
extracted emotions and causes separately to form
candidate emotion-cause pairs and then trained a
classifier to recognize true pairs. IE-CNN (Chen
et al., 2020a) reformulated the ECPE task as a se-
quence labeling task and extracted pairs in an end-
to-end fashion.
Position-sensitive Methods. Following methods
take relative position information as a crucial fea-
ture to recognize pairs. PairGCN (Chen et al.,
2020b) is a method highly dependent on position in-
formation when modeling relations between pairs.
ECPE-2D (Ding et al., 2020a) extracted pairs
through 2D representation, interaction, and pre-
diction. The window-constrained 2D Transformer
achieved the best performance. SLSN-U (Cheng
et al., 2020) extracted pairs through a process of
local search which was defined by the setting of the
local context window. RankCP (Wei et al., 2020)
utilized kernel-based relative position embedding
to enhance the clause representations obtained from
inter-clause modeling module. ECPE-MLL (Ding
et al., 2020b) used a multi-label learning method
inside each sliding window which was defined man-
ually.

5.1.4 Implementation Details
To conduct a fair comparison with the baselines,
we utilize the same word embeddings followed Xia
and Ding (2019). The dimension of word embed-
ding is 200. The numbers of hidden units of BiL-
STM in the word-level and clause-level encoder
are set to 200 and 100, respectively. We stack two
graph attention layers to build a graph attention
network and add dropout (Srivastava et al., 2014)
with the rate of 0.1 for each layer to reduce over-
fitting. During the training process, we use the
Adam (Kingma and Ba, 2015) optimizer to update
all parameters. We report the results of BERT (De-
vlin et al., 2019) in the appendix.

5.2 Experimental Results
5.2.1 Results on Original Test Set
Table 1 reports the comparative results on emotion
cause pair extraction and two sub-tasks. We can ob-
serve that position-sensitive models perform better
than position-insensitive models on average, indi-
cating the effectiveness of using relative position

http://news.sina.com.cn/society/


Category Model Emotion Ext. Cause Ext. EC Pair Ext.
P R F1 P R F1 P R F1

Position-insensitive
Baselines

Indep 0.8375 0.8071 0.8210 0.6902 0.5673 0.6205 0.6832 0.5082 0.5818
Inter-CE 0.8494 0.8122 0.8300 0.6809 0.5634 0.6151 0.6902 0.5135 0.5901
Inter-EC 0.8364 0.8107 0.8230 0.7041 0.6083 0.6507 0.6721 0.5705 0.6128
IE-CNN 0.8614 0.7811 0.8188 0.7348 0.5841 0.6496 0.7149 0.6279 0.6686

Position-sensitive
Baselines

PairGCN 0.8587 0.7208 0.7829 0.7283 0.5953 0.6541 0.6999 0.5779 0.6321
ECPE-2D 0.8512 0.8220 0.8358 0.7272 0.6298 0.6738 0.6960 0.6118 0.6496
SLSN-U 0.8406 0.7980 0.8181 0.6992 0.6588 0.6778 0.6836 0.6291 0.6545
RankCP 0.8703 0.8406 0.8548 0.6927 0.6743 0.6824 0.6698 0.6546 0.6610
ECPE-MLL 0.8582 0.8429 0.8500 0.7248 0.6702 0.6950 0.7090 0.6441 0.6740

Our Model MGSAG 0.8721 0.7911 0.8287 0.7510 0.6713 0.7080 0.7243 0.6507 0.6846

Table 1: Comparison of varying approaches on the original test set (Testall).

Model TestBias TestNoBias

Inter-EC 0.6783 0.3318
IE-CNN 0.7666 0.3484

PairGCN 0.7246 0.3355
ECPE-2D 0.7590 0.3830
SLSN-U 0.7456 0.3978
RankCP 0.7467 0.3857
ECPE-MLL 0.7673 0.3988

MGSAG 0.7730 0.4301

Table 2: F1 results of varying approaches on TestBias

and TestNoBias, focusing on EC Pair Ext.

Model TestBias TestNoBias Testall

w/o FGSAG 0.7594 0.3894 0.6519

w/o CGSAG 0.7654 0.4027 0.6529

w/o FGSAG+CGSAG 0.7264 0.3269 0.6242

MGSAG 0.7730 0.4301 0.6846

Table 3: F1 results of ablation study on TestBias,
TestNoBias, and Testall, focusing on EC Pair Ext.

information. However, our method MGSAG hasn’t
utilized relative position information, aiming to al-
leviate the position bias problem in ECPE. In spite
of this, MGSAG still outperforms the existing state-
of-the-art methods. Especially, MGSAG achieves
the best F1 on the main task: emotion-cause pair
extraction. The F1 score of MGSAG on ECPE is
1.06% higher than that of ECPE-MLL, which indi-
cates the efficiency of capturing multi-granularity
semantic relations between clauses.

For the two sub-tasks, MGSAG outperforms
other baselines in terms of cause extraction com-
pared with emotion extraction. This indicates that
the effective clause representation learning based
on MGSAG is beneficial to extract cause clauses
and further facilitate the extraction of emotion-
cause pairs.

5.2.2 Results on TestBias and TestNoBias

To evaluate if MGSAG is vulnerable when the
causes are not in proximity to the emotion, we eval-
uate it on the two subsets as shown in 5.1.2. Table 2
shows the results on TestBias and TestNoBias.
Noted that when we get the best results on the
original test set as shown in Table 1, we use the
same parameters to evaluate models on the two
subsets (TestBias and TestNoBias).

From Table 2 we observe that there is a sig-
nificant gap (34∼41%) between the results on
TestBias and TestNoBias, for all of the methods.
One of the reasons should be the imbalanced data
of TestBias and TestNoBias, which means the pro-
portion of position-insensitive data is very small.
More importantly, most of the methods exploit the
relative position information explicitly or implic-
itly, leading to poor performance on TestNoBias.

However, MGSAG outperforms existing state-
of-the-art baselines on both of the two subsets
(TestBias and TestNoBias), proving its generaliza-
tion ability towards position-sensitive and position-
insensitive data. Specially, the F1 score of MGSAG
on TestNoBias is 3.13% higher than that of ECPE-
MLL. The results verify the effectiveness of cap-
turing causal relations between clauses via multi-
granularity semantics encoding.

5.3 Discussions

We conduct ablation studies to analyze the effects
of different components and settings in our method
MGSAG.

5.3.1 Influence of Different Components
As shown in Table 3, we remove FGSAG, CGSAG,
and both of them respectively to verify the effective-
ness of the proposed two graphs with the semantics
of different granularity.



Figure 4: An example that MGSAG extracts the emotion cause pair (c11, c4) correctly, while ECPE-MLL fails.
Words shaded in yellow are keywords. The heatmap presents attention scores in the clause-keyword bipartite
graph. Rows of c11 and c4 are the top-two darkest rows, means that keywords pay more attention to them and
facilitate MGSAG to extract pair (c11, c4) correctly.

Effect of Fine-Grained Semantic Aware Graph.
We remove the FGSAG to verify the effect of
fine-grained semantic enhanced relations. Table 3
shows that removing FGSAG results in significant
performance degradation, indicating that it is in-
deed useful for pair prediction. Especially, the
result of F1 on TestNoBias decreases 4.07% with-
out the FGSAG, proving its efficiency of alleviating
position bias.
Effect of Coarse-Grained Semantic Aware
Graph. We remove CGSAG which is used for
coarse-grained semantic enhanced relations to ver-
ify its effect. Table 3 reports that model without
CGSAG results in a clear drop (2.74%/3.17%)
on TestNoBias and Testall, but a limited drop
(0.76%) on TestBias. It shows that modeling the
coarse-grained semantic relations between clauses
can alleviate position bias as well.
Effect of Semantic Aware Graph Model. We fur-
ther evaluate the effect of dual graph-based mod-
ules by removing FGSAG and CGSAG simultane-
ously. As shown in Table 3, the model without the
two graphs performs worse than without any one
of them. The significant performance decline of
the F1 score on all of the test sets verifies that the
fine-grained semantics and coarse-grained seman-
tics are complementary to each other. Thus, it’s
necessary to take both of them into account.

5.3.2 Influence of Two-Level Supervision
We use the two-level supervised signals to train
MGSAG. A low-level signal Lemo + Lcau su-
pervises the clause representation learning at the
clause-level encoder and a high-level signal Lpair
supervises the pair representation learning at the

Loss Function P R F1

Lpair 0.6940 0.6533 0.6720

Lpair + Lemo + Lcau 0.7243 0.6507 0.6846

Table 4: Comparison of different supervised signals for
our method.

Model TestBias TestNoBias Testall

w/ RW 0.7596 0.4078 0.6674

w/o EW 0.7669 0.3920 0.6686

w/o TW 0.7658 0.4271 0.6771

MGSAG 0.7730 0.4301 0.6846

Table 5: Comparative F1 results on TestBias,
TestNoBias, and Testall of our variant models, focus-
ing on EC Pair Ext. “w/ RW” means using random em-
beddings for keyword feature initialization. “w/o EW”
and “w/o TW” means removing emotion words and key
phrases obtained by TextRank, respectively.

classification stage. To evaluate the effectiveness
of low-level supervision, we only use Lpair to train
the model, and the results are shown in Table 4.
It shows that training with low-level supervision
brings an improvement mainly on precision, which
indicates that the low-level supervision is helpful
to learn more accurate emotion-specific and cause-
specific features and eventually facilitates the per-
formance on emotion-cause pair extraction.

5.3.3 Influence of Different Keyword Settings
As shown in Table 5, we use different keyword
settings to verify the effectiveness of our proposed
keywords, which is the union of emotion words
obtained from a sentiment lexicon (Xu et al., 2008)



and key phrases obtained by TextRank (Mihalcea
and Tarau, 2004). Removing any one of them re-
sults in a performance decline on all of the test sets.
It proves that it’s necessary to take both of them into
account. Moreover, we replace the keyword fea-
tures with randomly initialized embeddings, show-
ing a significant drop on TestNoBias. It indicates
that the fine-grained semantics implied in keywords
does help to alleviate the position bias problem.

5.3.4 Case Study
As shown in Figure 4, the distance between the
emotion clause c11 and the cause clause c4 is 7.
Although the cause clause c4 doesn’t contain any
keywords, global keywords in the document convey
crucial fine-grained semantics, helping MGSAG
extracts (c11, c4) correctly.

6 Conclusion and Future Work

In this paper, we propose MGSAG to alleviate the
position bias problem in the ECPE task. Our ap-
proach implements clause representation learning
via fine-grained semantics introduced by keywords
and coarse-grained semantics among clauses. Ex-
perimental results show that MGSAG surpasses the
state-of-the-art baselines, and outperforms other
methods significantly on the position-insensitive
data. In the future, we would like to tackle the prob-
lem of imbalanced data by reducing non-emotion-
cause pairs, based on a position-insensitive ap-
proach.
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A Experimental Results with BERT

Model TestBias TestNoBias

PairGCN 0.7246 0.3355
MGSAG 0.7730 0.4301

PairGCN (BERT) 0.8219 0.4005
MGSAG (BERT) 0.8214 0.5004

Table 6: F1 results of varying approaches with and
without BERT on TestBias and TestNoBias, focusing
on emotion cause pair extraction.

We implement MGSAG with the pre-trained
BERT (Devlin et al., 2019) to explore the effect

Model Emotion Ext.
P R F1

ECPE-2D 0.8512 0.8220 0.8358
PairGCN 0.8587 0.7208 0.7829
RankCP 0.8703 0.8406 0.8548
ECPE-MLL 0.8582 0.8429 0.8500

MGSAG 0.8721 0.7911 0.8287

ECPE-2D (BERT) 0.8627 0.9221 0.8910
PairGCN (BERT) 0.8857 0.7958 0.8375
RankCP (BERT) 0.9123 0.8999 0.9054
ECPE-MLL (BERT) 0.8608 0.9191 0.8886

MGSAG (BERT) 0.9208 0.9211 0.8717

Model Cause Ext.
P R F1

ECPE-2D 0.7272 0.6298 0.6738
PairGCN 0.7283 0.5953 0.6541
RankCP 0.6927 0.6743 0.6824
ECPE-MLL 0.7248 0.6702 0.6950

MGSAG 0.7510 0.6713 0.7080

ECPE-2D (BERT) 0.7336 0.6934 0.7123
PairGCN (BERT) 0.7907 0.6928 0.7375
RankCP (BERT) 0.7461 0.7788 0.7615
ECPE-MLL (BERT) 0.7382 0.7912 0.7630

MGSAG (BERT) 0.7979 0.7468 0.7712

Model Emotion Cause Pair Ext.
P R F1

ECPE-2D 0.6960 0.6118 0.6496
PairGCN 0.6999 0.5779 0.6321
RankCP 0.6698 0.6546 0.6610
ECPE-MLL 0.7090 0.6441 0.6740

MGSAG 0.7243 0.6507 0.6846

ECPE-2D (BERT) 0.7292 0.6544 0.6889
PairGCN (BERT) 0.7692 0.6791 0.7202
RankCP (BERT) 0.7119 0.7630 0.7360
ECPE-MLL (BERT) 0.7700 0.7235 0.7452

MGSAG (BERT) 0.7743 0.7321 0.7521

Table 7: Comparison of varying approaches with and
without BERT on the original test set (Testall).

of pre-trained language model, where we use the
base Chinese model3. We replace the word-level
encoder with the [CLS] embeddings of a clause
which is obtained by BERT. Results on TestBias

and TestNoBias with and without BERT are shown
in Table 6. Results on the original test set with and
without BERT are shown in Table 7.

During the training process, we use the Adam
(Kingma and Ba, 2015) optimizer to update all
parameters. The mini-batch size with BERT is set
to 2. The learning rate with BERT is set to 1e-5.

As shown in Table 7, methods with BERT per-

3We download the pre-trained model from this link: ht
tps://s3.amazonaws.com/models.huggingfac
e.co/bert/bert-base-chinese.tar.gz

https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz
https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz
https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz


form better than those without BERT on the origi-
nal test set, which shows the effectiveness of utiliz-
ing the pre-trained BERT. As shown in Table 6,
results of models with BERT on TestBias and
TestNoBias indicate that using BERT as the en-
coder cannot make up for the deficiency caused
by position bias. MGSAG still outperforms other
methods on Testall and TestNoBias. The results
verify the effectiveness of capturing the causal se-
mantic relations between clauses via fine-grained
and coarse-grained semantics encoding.


